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Abstract. Extended discrete kinetic theory including sources, sinks, creation and annihilation
of test particles, inelastic scattering, etc added to the elastic collisions, has recently been
introduced, in which, for instance polynomials of the mass are added to the mass conservation law
which becomes nonconservative. Here, to the classical two- and three-dimensional Broadwell
elastic collision models, we associate nonconservative models adding, to the conservation law,
a polynomial of the second degree. We present a method, for the determination of similarity,
periodic and(1+ 1)-dimensional exact solutions with one space variable, that we apply to the
Broadwell models with Piechor–Platkowski quadratic nonconservative terms.

1. Introduction

Recently [1, 2] an extended discrete kinetic theory (that we call nonconservative), introduced
by Boffi and Spiga, has been extensively studied. It is written in the literaturethe study
of a gas with only elastic scattering between the molecules seems to be too idealized for
application to the real world. So they add a background medium, external sources and sinks,
effects of absorption, and generation due to inelastic scattering, etc. A great difference, with
conservative discrete kinetic theory, is that the conservation laws are modified by including
polynomial functions of the densities. However, while for conservative discrete models [3]
the determination of exact solutions is well understood [4], for nonconservative models exact
solutions are missing. These nonconservative models do not have the important difficulties
of the conservative ones [3]. For instance, the two-velocity models satisfying two nonlinear
equations where only one linear combination can exist and necessarily the linear momentum
conservation law is violated. For models with at most three nonlinear equations (such as the
present Broadwell models) only two linear conservation laws can be deduced and the mass
and energy conservation laws cannot be distinguished. For models with more nonlinear
equations it can occur that not only linear physical conservation laws exist but others with
the appearance of ‘spurious’ conservation laws. Conversely for conservative models [3]
the existence of the conservation laws can be useful. For instance for shock waves, the
application of the Lax criterion, the determination of the characteristic velocities, the sound
waves, the supersonic and subsonic inequalities, etc.

For the exact solutions of conservative models the existence of linear conservation laws
is important. First for the similarity solutions (variablex− ξ t , spacex, time t), introducing
the properties coming from the linear differential conservation law, we are reduced to a
system of coupled Riccati solutions. When in addition to the linear conservation law there
exists only one nonlinear equation. Like for the one-dimensional two velocity models or
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the two- and three-dimensional Broadwell models with solutions depending on one spatial
coordinate, we only have one scalar Riccati equation which is integrable [5]. When two
coupled Riccati equations remain, it implies that two classes of solutions have been found:
either compatibility between two scalar Riccati equations which give monotonic solutions or
solutions more complicated which are nonmonotonic [6]. When three nonlinear equations
remain, it implies that only solutions compatible with three scalar Riccati equations have
been recently found [4]. For the present nonconservative Broadwell models, without linear
conservative relations, we have three quasilinear partial differential equations (PDEs) with
quadratic nonlinearities. We will present solutions arising from the compatibility of three
scalar Riccati equations and give a method which, in principle, could be applied to other
nonconservative model with four, five, etc quasilinear PDEs. Secondly let us consider
periodic, (1+ 1) and (2+ 1)-dimensional solutions. For conservative models they are
linear combinations of similarity solutions (with pairs complex conjugate for periodic parts),
which, from the superposition principle, are automatically satisfied for the linear differential
conservation laws. For the remaining nonlinear equations we obtain compatibility conditions
between the loss and gain collision terms.

Now for nonconservative models the modified conservation equations do not have gain
and loss quadratic terms and we cannot obtain solutions which are sums of similarity waves.
Here most of the solutions will be obtained from the resolution of one linear PDE.

We wish to explain, for the determination of possible similarity and(1+ 1) solutions
to the nonconservative models, a simple method so that the reader can try to extend these
solutions for other quasilinear PDE models with quadratic nonlinearities. However, as we
shall explicitly see here for the Broadwell models, many constraint relations have to be
satisfied. For instance, it is not easy to predict in advance whether positivity properties
will be satisfied. Our main idea is as follows: Consider quadratic nonlinearities built up
with densitiesNi(x, t) associated to linear differential terms. From the vanishing of these
quadratic nonlinearities, we can hope to obtain for eachNi two constant valuesn0i and
n0i + ni leading to two different identities. Let us consider the identities associated to
the setn0i + ni . We can eliminate the terms coming from the identities associated ton0i .
Identities remain with onlyni terms linear and quadratic and they are opposite. Assuming
nowNi(x, t) = n0i + niN(x, t) then the quadratic nonlinearities will be writtenN(N − 1)
multiplied by constants which are quadratic in theni set. Finally, the linear differential
terms will depend only onN derivatives and we will have to verify whether theseN(N−1)
quadratic terms and linear differentialN terms are compatible.

Here we wish to present our first two assumptions in a general framework. In sections 2
and 3 they are directly explained for the Broadwell models.

For i = 1, 2 . . . p independentNi(x, t) we consider a quasilinear system ofj = 1, 2 . . . p
coupled equations with constant real coefficientsa

(j)

i , b
(j)

i , c
(j)

i , c
(j)

ik , d
(j)

i and two variables
x, t :

Lj ≡ Rj Lj =
p∑
i=1

(a
(j)

i ∂x + b(j)i ∂t )Ni

Rj =
p∑

i,k=1

[c(j)i N
2
i + c(j)ik NiNk + d(j)i Ni + e(j)i ].

(1.1)

Our first assumption is that from the setRj = 0 with Ni = nas,i , i = 1, . . . p we can obtain
for anyNi at least two real rootsnas,i = n0i , n0i + ni . For similarity solutions thesenas,i
will be asymptotic states and for Broadwell models they must be positive. For damped
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oscillating waves and (1+ 1) solutions, at least one of them will be an asymptotic state.
p∑

i,k=1

[c(j)i n
2
as,i + c(j)ik nas,inas,k + d(j)i nas,i + e(j)i ] = 0. (1.2a)

We write (1.2a) for the setnas,i = n0i + n1, eliminate the terms coming fromnas,i = n0i ,
and deduce another relation which contains opposite terms quadratic and linear inni, nk:

Bj :=
∑

c
(j)

i n
2
i + c(j)ik nink = −

[∑
c
(j)

i 2n0ini + c(j)ik (n0ink + n0kni)+ d(j)i ni

]
. (1.2b)

Our second assumption is, for theNi(x, t), the existence of a commonN(x, t) = 1/D(x, t):

Ni(x, t) = n0i + niN(x, t) N(x, t)D(x, t) = 1 nas,i = n0i , n0i + ni (1.3)

giving the possibility to reduce the quasilinear (1.1) system to a linear one.
As above we substituteNi(x, t) given by (1.3) into (1.1)Rj(x, t) and eliminate the

constant terms coming from the setnas,i = n0i . Quadratic terms remain inniN, nkN which
factorizeN2 and terms linear inniN which factorizeN and, due to (1.2b), they have
opposite constantsBj . TheRj factorizeN(N − 1) with linear PDE in (1.1):

Rj = BjN(N − 1) = Bj(D − 1)/D2 Lj = −
∑

(ni/D
2)(a

(j)

i ∂x + b(j)i ∂t )]D
p∑
i=1

[ni(a
(j)

i ∂x + b(j)i ∂t )]D(x, t) = Bj(D(x, t)− 1).
(1.4)

The open nontrivial problem is whether or not compatibility conditions exist which satisfy
thep system (1.4) with only one functionN(x, t) or D(x, t).

In section 2 for similarity solutions functions ofz = x − ξ t , we write explicitly the
corresponding (1.4) compatibility conditions and our assumption is that they can be satisfied.
Later we apply to the Broadwell models for which we are able to justify these assumptions
and satisfy the compatibility and positivity conditions. In section 3, for periodic and (1+1)-
dimensional solutions, we assume that only oneNk is x, t-dependent while the others are
constants:Nj = n0j , j 6= k. We write the compatibility conditions that we justify for the
Broadwell models with positivity constraints. Two classes of solutions occur depending on
whether one of the twonas,k or both are positive.

The two- and three-dimensional Broadwell models, with solutions depending on one
spatial coordinatex, have three independent densitiesNi(x, t), i = 1, 2, 3. The densities
N1, N2 are associated to velocities±1 along thex-axis whileN3 (multiplicity 2(d − 1))
has zero for velocity projection along thex-axis. We define the total massρ, the elastic
collision termQ with cross sectionσ and write the three nonconservative equations for the
Nj, j = 1, 2, 3:

Q = N2
3 −N1N2 ρ = N1+N2+ 2(d − 1)N3

e1 = −e2 = 1 e3 = 0 σ1 = σ2 = σ = −(d − 1)σ3

Lj = (∂t + ej ∂x)Nj = Rj = σjQ+ κj (αρ2+ ηρ + ζ )−Nj(βρ + ε)+ Sj .
(1.5)

Q is the only present term in the conservative models. The others are the nonconservative
terms: β > 0, ε > 0 (α > 0, η > 0, ζ > 0) for the annihilation (creation) of test particles
as a result of inelastic collisions which can be quadratic or linear in the densities. The
κj ∈ (0, 1) with κ1 + κ2 + 2(d − 1)κ3 = 1 represent the fractions of secondary particles
generated with velocities+1,−1, 0 along thex-axis. As usualSi > 0 (< 0) are constants
associated to the external sources (sinks) which are independent of the densities.
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There exists a second equivalent representation of (1.5), written in terms ofρ (mass),
j = N1−N2 (momentum along thex-axis) andN3:

Lρ = ∂tρ + ∂xj = Rρ = (α − β)ρ2+ (η − ε)ρ + δ
δ := S1+ S2+ 2(d − 1)S3+ ζ
Lj = ∂tj + ∂x(ρ − 2(d − 1)N3) = Rj = (κ1− κ2)(αρ

2+ ηρ + ζ )
−j (βρ + ε)+ S1− S2

Q = N2
3d(2− d)+ (j2− ρ2)/4+ (d − 1)ρN3

L3 = ∂tN3 = R3 = −σQ/(d − 1)+ κ3(αρ
2+ ηρ + ζ )−N3(βρ + ε)+ S3.

(1.6)

There exist nonconservative models [2] with quadratic (α 6= 0, β 6= 0) ρ terms and another
with only linear terms. We choose the Piechor–Platkowski quadratic models such that,
for the vanishing r.h.s. in (1.5)–(1.6), two asymptotic states can exist forNi = nas,i in
(1.5) orρas, jas, nas,3 in (1.6). Let us note the following scaling invariance. Let us define
t̃ = tε, x̃ = xε and consider the ratios of the creation, annihilation, sources and sinks, elastic
cross section parametersα, β, η, δ, ζ, Si, σ by ε while the fractions termsκi are fixed. Then
(1.5) and (1.6) become invariant withNj, ρ, j → Nj(x̃, t̃), etc and we can always choose
ε = 1.

Like for conservative models, the r.h.s. of the mass (energy proportional to the mass for
Broadwell models) and momentum (1.6) equations are independent of the cross sectionσ .
For travelling waves, functions ofz = x−ξ t , the two macroscopic asymptotic statesρas, jas
depend only onα, β, η, ε, δ, κj , S1 − S2. Conversely fromρas, jas it is interesting to study
the associated microscopic quantities with the possible sources, sinks termsSj , j = 1, 2, 3.
The damped oscillating waves must have only one positive asymptotic state while for (1+1)
solutions we must distinguish the models with only one or two positive asymptotic states.

2. Similarity solutions

2.1. General (1.1) system

We consider the similarity solutions functions ofz = x − ξ t with assumptions (1.2a) and
(1.2b): existence ofnas,k = n0k, n0k+nk, k = 1, . . . p coming from(Rj (nas,1, . . . nas,p) = 0
and (1.3), commonN(z) = 1/D(z)) leading to the compatibility conditions (1.4) that we
rewrite for the scalarp Riccati equations (N ) or linear ordinary differential equations (ODEs)
(D):

Nj(x, t) = n0i + ni/D(x, t) N(x, t)D(x, t) = 1 nas,j = n0j , n0j + nj
AjdD/dz = 1−D Aj =

[∑
(ξb

(j)

i − a(j)i )ni
]/[∑

c
(j)

i n
2
i + c(j)ik nink

]
.

(2.1)

From the second assumptionD is j -independent and we will have to verify that a
compatibility condition between these linear ODEs exists. If so, we integrate easily:

A1 = A2 = · · · = Ap = −1/γ

dN/d(γ z) = N(N − 1) D(z) = 1+ deγ z d > 0
(2.2)

where d is an arbitrary constant which does not enter into the parameter relations. We
obtain

γ z→±∞ : D(z)→+∞, 1 N(z)→ 0, 1 Ni(z)→ n0i , n0i + ni. (2.3)
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Let us assume that we are able to satisfy all the constraints coming from our three
assumptions. For a study of the stability around the twoN(z) asymptotic states 0, 1 we
substituteN(z)+ δN(z) into (2.3), linearize inδN(z) and obtain

dδN
d(γ z)

= (2N − 1)δN

γ z→±∞ :→ dδN/d(γ z) = ∓δN and δN → 0.
(2.4)

For a system ofp > 2 equations, forgetting the model parameters, we have 2(p + 1)
parametersn0i , ni, γ, ξ coming from the solutions and 3p constraints (1.2a)–(2.2) which
means that some model parameters must enter into the constraint relations. We will
determine such solutions for the Broadwell nonconservative models withp = 3 and
we expect to finally obtain a constraint between the model parameters. In view of the
nonconservative model parameters of the (1.5)–(1.6) typeα, β, ε, η, ζ, Si, κi (in fact one is
a scaling parameter) we have 2(p + 2) additional parameters.

2.2. Similarity solutions for the nonconservative Broadwell models

Our first assumption is that for travelling waves we are able to find two positive asymptotic
states for each densityNk, k = 1, 2, 3. We choose representation (1.6) and write the linear
differential termsLρ = Rρ,Lj = Rj , L3 = R3 for similarity solutions:

Lρ = d

dz
(−ξρ(z)+ j (z)) Lj = d

dz
(−ξj (z)+ ρ(z)− 2(d − 1)N3(z))

L3 = −ξ d

dz
N3(z).

(2.5)

Lρ,Lj , L3 are zero for constant asymptotic states with|z| → ∞, and we write with
Rρ = Rj = R3 = 0 theρas, jas, nas,3 asymptotic relations:

ρas = ρ0, ρ0+ ρ1 : (α − β)ρ2
0 + (η − ε)ρ0+ δ (ρ1+ 2ρ0)(α − β) = ε − η (2.6a)

jas = j0, j0+ j1 : j0(βρ0+ ε) = (κ1− κ2)(αρ
2
0 + ηρ0+ ζ )+ S1− S2

j1(β(ρ0+ ρ1)+ ε) = ρ1(κ1− κ2)(α(ρ1+ 2ρ0)+ η)− βj0ρ1 (2.6b)

nas,3 = n03, n3+ n03 : σ [d(2− d)n2
as,3+ (j2

as − ρ2
as)/4]/(d − 1)

= − nas,3[ρas(σ + β)+ ε] + κ3[αρ2
as + ηρas + ζ ] + S3. (2.6c)

In (2.6a) and (2.6b) we successively obtain the macroscopic asymptotic states from
ρ0, ρ1, j0, j1 and we rewrite the heavy (2.6c) relations forn03, n3:

−(d − 1)/σ = [d(2− d)n2
03+ (j2

0 − ρ2
0)/4+ (d − 1)n03ρ0]

/[n03(ρ0β + ε)− κ3(αρ
2
0 + ηρ0)− S3− κ3ζ ]

= [n3(n3+ 2n03)d(2− d)+ j1(j1+ 2j0)/4− ρ1(ρ1+ 2ρ0)/4+ (d − 1)

((ρ0+ ρ1)n3+ ρ1n03)]/[n3((ρ0+ ρ1)β + ε)
+n03βρ1− κ3ρ1(α(ρ1+ 2ρ0)+ η)]. (2.6c′)

The positivity problem for the sixn0i , n0i + ni, i = 1, 2, 3 is not trivial and an analytic
study is carried out in appendix A.1. We begin with inequalities for the nonconservative
parameters sufficient for two positiveρas states. For the other proofs, for brevity we restrict
ourselves to the partially symmetric nonconservatived = 2 models withκ1 = κ2, κ3 = 0.
We continue with sufficient conditions so thatρas ± jas is positive and we obtain:
|S1 − S2| � 1, δ finite. Finally assuming|S3| � 1, σ finite, we show the positivity
for nas,j , j = 3, 1, 2.
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Our second assumption is that we are able to reduce the nonlinear differential system
(1.6)–(2.5) to a linear one and satisfy the compatibility conditions. For this we assume the
existence of a commonD(z = x − ξ t). The densitiesNi are directly obtained forN3 and
by linear combination for the following equations

Nk(z) = n0k + nk/D(z) k = 1, 2, 3

ρ(z) = ρ0+ ρ1/D(z) j (z) = j0+ j1/D(z)

Ni(z) = [ρ(z)+ (−1)i+1j (z)− 2(d − 1)N3(z)]/2= n0i + ni/D(z) i = 1, 2.

(2.7a)

We substitute into (1.6)–(2.5) theRρ,Rj , R3 with (2.6a)–(2.6c) proportional to(1−D)/D2

andLρ,Lj , L3 to 1/D2 we will obtain three ODEs forD:

D2Lρ = (ξρ1− j1)
dD

dz
= D2Rρ = (α − β)ρ2

1(1−D)

D2Lj = (ξj1− ρ1+ 2(d − 1)n3)
dD

dz
= D2Rj = ((κ1− κ2)ρ

2
1 − j1ρ1β)(1−D)

(2.7b)

and a similar heavy relationsL3D
2 = R3D

2 that for brevity we do not write down. We
definen3 := n3/ρ1, j1 := j1/ρ1 and write the conditionsAρ = Aj = A3 so that the three
ODEs for the same functionD(z) are the same and we integrate easily:

D(z) = 1+ eγ z

Aρ = (ξ − j1)/(α − )
¯
= Aj = [j1ξ − 1+ 2(d − 1)n3]/[(κ1− κ2)α − βj1] = A3

= n3ξ/[−σ(d(2− d)n2
3+ (j

2
1− 1)/4)/(d − 1)− (σ + β)n3+ κ3α]

= − ρ1/γ.

(2.7c)

Forgettingγ we finally have to solve eight different relations in (2.6a, b, c)–(2.7c). We
rewrite the relation betweenδ, ζ, Sk:

2(d − 1)S3+ ζ = δ − (S1+ S2). (2.7d)

We discuss the construction, from arbitrary parameters, of the solutions and verify the above
scaling invariance. From the ratios ofα, β, η, δ, ζ, Si, σ, γ by ε with κi, ξ, ρas, jas , nas,j
fixed, then the (2.6a)–(2.7c) relations are invariant and we can chooseε = 1.

First for the asymmetric models (κi different) we choose, as arbitrary parameters,
those coming from the nonconservative terms:α, β, η, ε = 1, Si, κi, ζ plus the wavespeed
ξ ∈ (−1, 1). From (2.6a) and (2.6b) we deduceρ0, ρ1, j0, j1 and from the firstAρ = Aj
(2.7c) relation obtainn3. From the second and third (2.6c′) terms we obtain a cubic (d = 3)
or quadratic (d = 2) n03 polynomial, deducen03 while σ is obtained with the first term.
It remains only the compatibility relationAρ = A3 in (2.7c), without a new unknown
parameter, leading to a constraint relation between our arbitrary parameters, for instance for
σ .

Secondly for the partially symmetric,κ1 = κ2 6= κ3 or completely symmetric 2dκi = 1
models we are interested in different physical problems, keeping alwaysε = 1.

(i) We start with five nonconservative fixed parametersα, β, η, δ, S1− S2 values which
determine the four asymptotic macroscopic states (see (2.6a) and (2.6b)) ρas, jas . We wish
to know the possible associated microscopic states, the wavespeedξ ∈ (−1, 1) and the
restrictions on the sources, sinksSi and ζ > 0 which are not fixed, satisfy a first (2.7d)
relation with 2(d − 1)S3 + 2S1 + ζ known. For the four remaining relations (2.6c′)–
(2.7c) we add another arbitrary parameter, the elastic cross sectionσ . From (2.7c) we find
ξ = a0 + a1n3 linear (a0 and a1 known), deduce a cubic (d = 3) or quadratic (d = 2)
polynomial for n3 that, for brevity, we do not write these down. We obtain bothξ, n3
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function of the arbitrary parameters. It remains the two relations (2.6c′) both given03 (and
we can deduce all asymptotic microscopic statesnas,j , j = 1, 2, 3) and a second relation
S3+ κ3ζ for the two nonconservative parametersS3, κ3ζ . We can deduce bothS3, ζ > 0 as
functions of another arbitrary parameterS1 which> 0 is a source or< 0 a sink. Finally, all
the parameters are known and all relations satisfied withα, β, η, δ, S1 − S2, σ, S1 arbitrary
values.

In the simplified caseκ3 = 0, we obtainS3 directly from (2.6c′) it remains the first
nonconservative parameter relation (2.7d) with only one arbitrary parameter eitherS1 or
ζ > 0.

(ii) We note that with five parametersα, β, η, δ, S1 − S2 we determine only four
macroscopic asymptotic states. Conversely in appendix A.2 we show that fromρas, jas
we determine theβ andS1− S2 parameters whileη andδ depend linearly onα.

Let us start with the six parametersρas, jas, σ, S3 given and seek both all microscopic
nas,k, k = 1, 2, 3 states and the other nonconservative parameters. First from (2.6a)–(2.6b)
we deduce (appendix A.2)β, S1 − S2 while η, δ depend linearly onα which is unknown.
For simplicity we consider the caseκ3 = 0. Secondly from (2.6c′) we obtain successively
n03, n3 as roots of polynomials (quadratic ifd = 3, linear if d = 2). Thirdly from (2.7c)
we obtain successivelyξ andα rational inξ . Fromα we deduce bothη, δ with the above
linear relations found from (2.6a) and (2.6b). Finally it remains (2.7d) where 2S1 + ζ is
known and we considerS1 as arbitrary, from which we deduce the last parametersS2, ζ . A
similar heavier analysis can be performed forκ3 6= 0.

The important point is that when the macroscopic asymptotic statesρas, jas , the cross
sectionsσ and the source (or sink)S3 are fixed all microscopic states are found while, due to
the only knowledge ofS1− S2, different interpretations on the sources or sinksSi, i = 1, 2
are possible.

2.3. Numerical calculations for a partially symmetric modelκ1 = κ2 = 1
2, κ3 = 0

(i) As a first stage, in figures 1(a) and (b) for d = 2 and figure 1(c) for d = 3,
for the same macroscopic asymptotic states (mass and momentum) determined from
α, β, η, ε = 1, δ, S1− S2, we present theρ(z), Ni(z) positive curves:

α = 5
9 ' 0.55> β = 22

45 ' 0.48 η = 2
90 < ε δ = 32

9 ' 3.55

S2− S1 ' 11.55→ ρ0 = 8.0 ρ1 = − 4
3 ρ0+ ρ1 > 0

j0 = −2.35 j1 = −0.36

(2.8)

associated to three cross section values giving forS3 either a source or sinks:∣∣∣∣∣∣∣
σ S3 ξ 2S1+ ζ n03, n3 n02, n2 n01, n1 γ

1a 0.73 5.0 0.57 −18.0 1.46− 0.168 3.7− 0.32 1.36− 0.67 29.6
1b 10.5 −94.0 0.26 180.0 0.675− 0.623 4.50.136 2.15− 0.22 −29.0
1c 4.38 −20.2 0.27 73.0 0.31− 0.308 4.50.13 2.2− 0.23 126.0

∣∣∣∣∣∣∣ .
(2.9)

In figure 1(a) all macroscopic and microscopic quantities correspond toS3 > 0, source and,
due to the restrictionζ = −18.0− 2S1 > 0, to S1 6 −9.0, sink andS2 6 2.5, source or
sink. Similarly, in figure 1(b) and 1(c) we haveS3 < 0, sink and, due to the restriction
ζ = 180.0− 2S1 > 0 (ζ = 73.0− 2S1 > 0) we obtainS1 6 90.0 (6 36.5), source or
sink andS2 6 101.5 (6 25.0), source or sink. In figures 1(a)–(c) the asymptotic limits
for the massesρas and momentumjas are the same but theγ are different (with a sign in
figure 1(b) opposite the figures 1(a)–(c)) and the presented curvesρ(z) are different.
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Figure 1. Travelling waves (similarity solutions) with positive asymptotic states for the
nonconservative two- and three-dimensional Broadwell models with annihilation, creation of
test particles. The asymptotic states for the mass and the momentum are the same.S1, S2 can
be either source or sink butS1 − S2 is fixed. (a) S3 > 0 source, (b) and (c) S3 < 0 sink.

(ii) In the second stage we start ford = 2 with theρas, jas values written down in the
second line (2.8) and the cross sectionσ = 0.73 as in figure 1(a), (2.9). In view of the
above discussed (ii) case onlyS3 is arbitrary. Whileβ and S1 − S2 have the same (2.8)
values, in contrastη andδ are linear inα and are not determined. Due to positivity,η > 0
and |ξ | < 1 we obtain fromS3 ∈ (2.62, 5.03) for α, δ, η, nas,i , i = 1, 3 closed intervals:

α ∈ (0.32, 0.57) δ ∈ (−9.0− 3.6) η ∈ (3.47, 0.001) ξ ∈ (−1, 0.57)

2S1+ ζ ∈ (−26.0,−18) n03 ∈ (1.23, 1.461) n03+ n3 ∈ (1.03, 1.29)

n02 ∈ (3.94, 3.71) n02+ n2 ∈ (3.66, 3.4) n01 ∈ (1.58, 1.36)

n01+ n1 ∈ (0.948, 0.684).

We see thatS1 arbitrary> (13.0, 8) is a source. IfS3 is fixed we obtain only one solution
(except forS1, S2) and as illustration give an example withS3 = 3:

α = 0.35 η = 3.03 δ = −7.4 ξ = −0.65
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nas,3 = 1.27, 1.07 nas,2 = 3.9, 3.6 nas,1 = 1.5, 0.9.

3. (1+ 1)-dimensional and periodic solutions

3.1. General (1.1) system

We rewrite (1.1),Lj associated to onlyNj and inRj we distinguish oneNk with k fixed:

Lj = (aj ∂x + bj∂t )Nj ≡ Rj = N2
k c
(j)

k +Nkd(j)k + e(j)k (3.1)

with c(j)k constant ande(j)k , d
(j)

k respectively at most quadratic, linear in theNi, i 6= k. In
contrast to the similarity solutions, with only one variable, for (1+1)-dimensional solutions,
we have not found for the nonconservative Broadwell models (as we shall see later) the
possibility to satisfy the ansatz (1.4) with more than one density. Consequently we present
a method for a possible determination of (1+1) solutions with only oneNk(x, t), the other
being constants. For the applications it will remain to verify whether or not the assumptions
can be justified.

Our first assumption is that onlyNk(x, t) while the others are constantsNi = n0i , i 6= k
(positive for Boltzmann densities). This impliesLj = Rj ≡ 0, j 6= k and the coefficients
of the quadraticNk polynomials must be zero. We also assume thatRk = 0 leads to two
possible real rootsnas,k = n0k, n0k + nk (with at least one positive for Boltzmann densities)

j 6= k : c(j)k = d(j)k = e(j)k = 0 (3.2a)

n2
as,kc

(k)
k + nas,kd(k)k + e(k)k = 0 nkc

(k)
k = −(2n0kc

(k)
k + d(k)k ). (3.2b)

The constants of the quadratic (3.2a) polynomial must be such that the roots are real.
Our second assumption is still forLk = Rk:

Nk(x, t) = n0k + nkN(x, t) N ≡ 1/D(x, t) (3.2c)

which, taking into account the opposite signs of the last (3.2b) relation, still givesRk
proportional toN(1−N) or (1−D)/D2 and only one equation of the (1.4) type:

(ak∂x + bk∂t )N(x, t) = c(k)k nkN(1−N)
(ak∂x + bk∂t )D(x, t) = c(k)k nk(D − 1).

(3.2d)

The nonlinear PDE forN or equivalently the linear PDE forD are well known.
In the following we apply this general formalism to the Broadwell models and construct

periodic and (1+ 1)-dimensional solutions. We have to verify the compatibility between
the (3.2a) and (3.2b) conditions, in particular the positivity properties. In contrast to the
similarity solutions, we do not need the twonas,k to be positive. We find a class of solutions
with either onlyn0,k or n0,k + nk positive, nevertheless we constructD(x, t) > 0 solutions
such thatn0,k + nk/ supD > 0 if n0k + nk > 0 or n0,k + nk/infD > 0 if n0k > 0.

3.2. Nonconservative Broadwell models

We choose the (1.5) systemLj = Rj for Nj, j = 1, 2, 3 with ej , κj , Sj written in (1.5):

Lj = (∂t + ej ∂x)Nj = Rj = σjQ+ κj (αρ2+ ηρ + ζ )−Nj(βρ + ε)+ Sj
Q = N2

3 −N1N2 ρ = N1+N2+ 2(d − 1)N3, σ1 = σ2 = σ = −(d − 1)σ3.
(3.3)

For a solutionN3(x, t), Ni = n0i , i = 1, 2, in Ri = 0, the coefficients ofN2
3 must be zero,

leading toσ + κiα = 0 not possible from positivityσ > 0, κi > 0, α > 0.
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So our first assumption isNk = Nk(x, t), Nj = n0j , N3 = n03 with k, j either 1, 2 or
2, 1 and the possibility to findn0j > 0, n03 > 0 and at least onenas,k > 0 for Nk.

We haveL3 = Lj ≡ 0 and fromRj(Nk) = R3(Nk) ≡ 0 we obtain two quadraticNk(x, t)
polynomials with coefficients which must be zero. The coefficient ofN2

k in Rj = 0 being
κjα we obtain eitherκj = 0 or α. In the first case the coefficient ofNk in Rj = 0 leads to
β + σ = 0 which violates positivity, so that the restrictionα = 0 remains.

From the vanishing coefficients ofNk in R3 = Rj ≡ 0 (see the linearNk polynomials
in appendix A.3), we obtain two other relations leading to positive densitiesn03, n0j :

α = 0 n0j = κjη/(σ + β) > 0

n03 = (η/β)[κ3+ σκj/(d − 1)(σ + β)] > 0.
(3.4a)

It remains the constant terms which, with (3.4a), can be written:

σ [n2
03+ n2

0j + 2(d − 1)n03n0j ] = n0j ε − Sj − κj ζ = (d − 1)(S3+ κ3ζ − n03ε). (3.4b)

For theRk(nas,k) = 0 relation we write the quadraticnas,k polynomial:

nas,k = n0k, n0k + nk a1 := (κj − κk)η + 2(d − 1)n03β + ε
a0 := κk(ζ + η(n0j + 2(d − 1)n03)+ σn2

03+ Sk
βn2

as,k + nas,ka1− a0 = 0 β(nk + 2n0k)+ a1 = 0.

(3.4c)

We can verify the above scaling invariance with the ratios ofβ, η, ζ, σ, Si by ε > 0 with
κi fixed, then in (3.4a)–(3.4c), n0j , n03, nas,k are invariant and we can chooseε = 1.

From (3.4c) we deducen0k, nk and two different classes.
(i) If either Sk > 0 (source) witha0 > 0 or if κj > κk (or symmetric modelκj = κk)

with a1 > 0, necessarily one of the two possible asymptotic statesn0k, nk + n0k is negative
and we must construct solutions with only one asymptotic state.

(ii) In contrast ifSk is sufficiently negative (sink) witha0 < 0 andκj < κk (asymmetric
model), we can have (see appendix A.4) two positive asymptotic states.

For our second assumption we writeNk = n0k + nkN(x, t), substitute intoLk = Rk,
take into account the second (3.4c) relation, deduce a nonlinear PDE forN(x, t)

(∂t + ek∂x)N(x, t) = −βnkN2−N(β2n0k + a1) = −βnkN(N − 1)

or equivalently a PDE forD = N−1. We write also the massρ:

Nk(x, t) = n0k + nk/D(x, t) ρ = n0k + n0j + 2(d − 1)n03+ nk/D
(∂t + (−1)(k+1)∂x)D(x, t) = βnk(1−D).

(3.5)

Before discussing the solutions of the PDE (3.5), we consider, from relations (3.4a)–(3.4c),
the determination of the parameters from arbitrary ones.

We start withσ, β, η, ε, κ1, κ2, Sk, ζ , deduceκ3 = −(κ1+κ2)/2(d−1) and successively
n0j > 0, n03 > 0, (3.4a) Sj , S3, (3.4b) andnk, n0k (3.4c) with at least onen0k or n0k + nk
positive. From the superposition principle we can add any number of solutions satisfying
the linear PDE (3.5) forD(x, t).

We begin with the periodic solutions and, for brevity, write one of the simplest

Nk = n0k + nk/D D(x, t) = 1+1(x, t)
1(x, t) = de−nkβt cosγ (x + (−1)kt) d > 0, γ arbitrary.

(3.6)

We could also have for the oscillating terms
∑
dm cos(γm(..)) +dm sin(γ m(.)) with m, dm,

dm, γm, γ m arbitrary, etc. The oscillations propagate with time and the interesting solutions
are those withnk > 0 because the damping factor whent → ∞ leads to the asymptotic
staten0k + nk for which we can, in (3.4c), choose a positivenas,k > 0 root.
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We prove that we can always have a damping factornk > 0 and positive solutions.
(i) If only one of the two rootsn0k, n0k + nk is positive (as shown aboveSk source

or κj > κk) we choosen0k < 0, n0k + nk > 0 and necessarilynk > 0. Furthermore,
Nk > n0k+nk/(1+d) and we can choosed sufficiently small such thatn0k+nk/(1+d) > 0
or Nk, ρ > 0 for t > 0 and|x| ∈ (0,+∞).

(ii) If the two rootsnas,k are positive (S1 sink, κk > κj and appendix A.4 for sufficient
conditions), withd < 1 we obtainD > 0 and the positivity is satisfied. In appendix A.4
we show that we can always choosenk > 0. In both cases withnk > 0, positivity att = 0
gives positivity∀t > 0 and we see only one asymptotic staten0k + nk when t →∞.

We continue with the(1+ 1)-dimensional solutions. Here also we can start with an
arbitrary number1 =∑ dmeγm(x−ξmt) of terms but, for simplicity, we consider only two of
them that we substitute into the linear PDE (3.5)

Nk = n0k + nk/D D = 1+1 1(x, t) =
2∑
1

dmeγm(x−ξmt) > 0

γm = βnk/(ξm + (−1)k) with arbitrarydm > 0, ξm.

(3.7)

We prove positivity in the two cases with only onenas,k positive or two.
(i) Choosingγm such thatγ1γ2 < 0, for t fixed D → ∞, Nk → n0k when |x| → ∞

and we discuss the nontrivial case whenn0k > 0 but n0k + nk < 0. Furthermore, choosing
γmξm < 0 for at least one of the twom values, it follows for|x| fixed andt →∞ that still
D→∞, Nk → n0k > 0. The important point is that1 cannot vanish and we must choose
the arbitrary positive parametersdm such thatn0k + nk/(1+inf1) > 0 leading toNk > 0.

(ii) If γ1γ2 > 0 then, like for similarity solutions,D → ∞, 1 when |γmx| → ∞ and
the two statesn0k, n0k + nk must be positive. Due to the fact that1 > 0, D > 1, the
positivity is always satisfied but the patterns will be different becauseNk will have the two
state limits. With the twonas,k > 0 andγ1γ2 < 0 we could also construct positive solutions.

In appendix A.5 we explain the difficulty to obtain (1+ 1) solutions of the (1.4) type
Ni(x, t) = n0i + niN(x, t) with more than one density. The possible solutions are self-
similar (as in section 2) or one-dimensional but not (1+ 1).

3.3. Numerical calculations

For (1+ 1) solutions we have two cases, for the positivity associated to only one positive
nas,k or two when|x| → ∞ and t finite. The solutions are very different (figures 2(b) and
3(b)). However, for oscillating damped solutions, only one asymptotic state really exists,
the one witht →∞ and the solutions are similar (figures 2(a) and 3(a)).

We first discuss the case, for a symmetric modelκi = 1/2d, with only one positive
nas,k. In figures 2(a) and (b) with d = 3 we choosek = 1 orN1(x, t), N2 = n02, N3 = n03

and:

S1 = 2.28 source β = 0.628 σ = 0.028= η ε = 1 ζ = 0.077.

In figure 2(b) we chooseξm such thatγmξm < 0, dm = 1.6 and deduce from (3.4a)–(3.4c)

n02 = 0.05 n03 = 0.09 S2 = 0.028 S3 = 0.077 nas,1 = −0.312, 1.18

figure 2(a) : n01 = −0.312 n1 = 4.3 n01+ n1 = 1.18> 0 n1β = 2.76

d = 0.15

figure 2(b) : n01+ n1 = −0.312 n1 = −4.3 n01 = 1.18> 0 γ1 = 6> 0

γ2 = −24.6.
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Figure 2. Periodic and(1+ 1)-dimensional solutions for the nonconservatived = 3 Boltzmann
symmetric model with annihilation, partly creation of test particles and sources. We notice a
sourceS1 and only one positive asymptotic state. (a) Damped periodic waves; (b) (1 + 1)
solution relaxing towards a constant.

Figure 3. Periodic and (1+ 1)-dimensional solutions for an asymmetricd = 2 model andS1 a
sink. (a) Damped periodic waves with one positive asymptotic state; (b) (1+ 1) solution with
two positive asymptotic states.

The positive solutions are respectively periodic damped in figure 2(a) and (1+ 1)-
dimensional in figure 2(b). In figure 2(b) we also have in fact some damping because,
when t → ∞, we see a limit forN1 which is the same as the supN1 = n01 limit when
|x| → ∞ with t finite. In contrast infN1 depends on bothx, t finite but still tends ton01

when t →∞.
Secondly we present solutions for an asymmetric modelκ1 = 0.9� κ2 = κ3 = 1

30 with
two positivenas,k in figures 3(a) and (b), d = 2, with N1(x, t), N2 = n02, N3 = n03 and

S1 = − 19
18 ' −1.05 sink ε = 1 β = 2

3

σ = 0.005 55 η = 0.555 ζ = 7
18 = 0.0388.
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In figure 3(b) we chooseξm such thatγmξm > 0, dm = 1.6 and deduce from (3.4a)–(3.4c):

n02 = 0.025 n03 = 0.03 S2 = 1
900 ' 0.0011 S3 ' 0.0019

figure 3(a) : n01 = 0.1 n1 = 0.3> 0 n01+ n1 = 0.4> 0 n1β = 0.2

d = 0.25

figure 3(b) : n01+ n1 = 0.1 n1 = −0.3< 0 n01 = 0.4> 0 γ1 = 4
9

γ2 = 11
35 ' 0.31.

In figure 3(a) with periodic damped solution and asymptotic staten01 + n1 > 0 when
t → ∞, the features are similar to those in figure 2(a). In figure 3(b) (in contrast to
figure 2(b)) we see the two different asymptotic limitsn01, n01+ n1 when |x| → ∞ and
the limit n01+ n1 when t →∞ and |x| finite. Roughly speaking thet-dependent solutions
are translated, when the time increases, although they are not self-similar.

Due to the scaling invariance, if we replaceε = 1 by a value larger or smaller than 1,
thenβn1 becomes larger or smaller and the damping in figures 2(a)–3(a) becomes stronger
or weaker.

4. Conclusion

For the similarity solutions with two asymptotic states we were interested in the classical
inverse problem of the possible determination of the microscopic states (herenas,j , j =
1, 2, 3) from the knowledge of the macroscopic ones (hereρas for the mass andjas for
the momentum). If we only giveρas, jas we obtain a two-parameter family ofnas,j . If
we add the elastic cross sectionσ we are reduced to a one-parameter family. Finally,
with ρas, jas, σ and the knowledge of a source (or sink)S3 associated to the density with
momentum zero, then we obtain only one class ofnas,j . However, for the other two sources
(sinks), for the velocities±1, only S1 − S2 is known so that they can be either sources or
sinks.

For the (1+ 1)-dimensional solutions with either only one asymptotic state or two we
were interested to understand this distinction. We find either a source or a strong sink for
oneSi, i = 1, 2 and a dominant associatedκi .

Recently, applying the method presented in sections 2 and 3 forp = 2, we have
determined the same classes of similarity, periodic, (1+ 1) solutions for the different
Carleman, McKean, Illner [7] two velocity models. In principle, the same method forp

independent densities could lead, due to the above discussion on the number of constraints
and parameters, to solutions similar to the presentp = 3 ones, but it will remain to verify
that both the positivity properties and the compatibility between the constraints can be
satisfied.

The presented similarity solutions are not too different for conservative and
nonconservative models. For a model withp independent densities andq conservation laws,
we obtain for conservative model a compatibility between onlyp−q scalar Riccati equations
and betweenp for the nonconservative one. However, the other class of nonmonotonic [6]
similarity solutions, obtained for the conservative models, have, up until now, not been
found for the nonconservative ones and it will be interesting to seek such solutions. We
notice that the formalism is more complicated with more constraint relations. In view of
the standard Riccati coupled solutions [8], mainly projective and conformal, they have, up
until now, not been found in both conservative and nonconservative models.

In the nonconservative two-velocity models [2], the determination of the hydrodynamic-
associated equations was performed and it seems useful to generalized to other
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nonconservative models. For nonconservative models it will be useful to study exact
solutions satisfying boundary conditions [2] which is outside the scope of this paper.

The periodic and(1+1)-dimensional solutions found are very different for conservative
and nonconservative models. It seems useful to try to apply the method presented to other
nonconservative models withp > 3 or more than three independent densities.

As usual the exact solutions can be a paradigm for a study of numerical solutions around
them. For instance for the (1+ 1)-solutions with only onex, t-dependent density, it will be
useful to determine numerically more general solutions in order to understand what happens
when they reduce to the exact ones.
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Appendix. Nonconservative Broadwell models

A.1. Positivity for the similarity solutions

We begin with (2.6a): (α − β)ρ2
as + δ = (ε − η)ρas , recall at leastβ > 0, η > 0, ζ > 0,

chooseε = 1 and write sufficient (not necessary) conditions for two real positiveρas roots:

α > β 1> η δ = S1+ S2+ 2(d − 1)S3+ ζ > 0 (1− η)2 > 4(α − β)δ.
(A.1)

We choose the modelκ1 = κ2 in (2.6b) with 3 := βρas + 1, jas = (S1 − S2)/3, assume
|S1− S2| � 1 andδ finite and obtain from (2.6a) and (2.6b):

�± := ρas ± jas = [αρ2
as + ρasη + δ ± (S1− S2)]/3 > δ − |S1− S2| > 0. (A.2)

In (2.6c) and (2.6c′) we choose the modeld = 2, κ3 = 0, assume|S3| � 1, σ finite and
obtain:

ñas,3 = nas,3(3+ ρasσ ) = S3+ σ�+�−/4> S3+ σ(δ − |S1− S2|)2/4> 0. (A.3)

For thenas,i , i = 1, 2 we definen±as = �±/2− nas,3 and obtain:

2ñ±as = 2n±as(ρasσ +3) = −2S3+�±(ρasβ + 1+ σ�±/2)
2ñ±as > −2S3+ (δ − |S1− S2|)(1+ ρasβ)+ σ(δ − |S1− S2|)2/2> 0.

(A.4)

In conclusion for thed = 2, κ1 = κ2, κ3 = 0 models, with the assumptions|S1 − S2| � 1,
|S3| � 1 andδ, σ finite, the six asymptotic statesnas,j , j = 1, 2, 3 are positive.

A.2. Relations betweenρas, jas and the nonconservative parameters

Fromρas, jas in (2.6a) and (2.6b) we obtainβ, S1−S2 and a linear relation betweenα, η, δ:

ε = 1, κ1 = κ2 : A := j1(ρ0+ ρ1)+ j0ρ1

β = −j1/A S1− S2 = j0ρ1(j1+ j0)/A

α = −j1/A+ δ/ρ0(ρ0+ ρ1) = [−η + (ρ1j0− j1ρ0)/A]/(ρ1+ 2ρ0).

(A.5)
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A.3. LinearRj ,R3 polynomials for the (1+ 1) solutions

We write the (3.3)Rj(Nk) = R3(Nk) ≡ 0 polynomials, linear whenα = 0:

Nk[−(σ + β)n0j + κjη] + σn2
03+ (κjη − βn0j )(n0j + 2(d − 1)n03)

+κj ζ − n0j ε + Sj
Nk[σn0j /(d − 1)+ κ3η − n03β] − σn2

03/(d − 1)+ (κ3η − βn03)(n0j + 2(d − 1)n03)

+κ3ζ − n03ε + S3.

The linear and constant terms are zero.

A.4. Sufficient coonditions for positivenas,k (1 + 1) solutions

We give sufficient conditions so that the two roots ofβn2
as,k + nas,ka1 − a0 = 0, written in

(3.4c) are positive. We chooseε = 1, assumeβ large,η and−Sk of the same order while
the other parameters are small. More precisely:

β � 1 η = ηβ Sk = −skβ < 0 with η > 0, sk > 0 finite

σ/β � 1 κi/β � 1 ζ/β � 1
(A.6)

we deduce forn0j , n03 anda0, a1 written respectively in (3.4a) and(3.4b):

n0j ' κjη n03 ' κ3η a1 ' βη(1− 2κk)

a0 ' β[η2κk(1− κk)− sk] 1/β2 = η2[1+ 8κk(κk − 1)+ sk].
(A.7)

1 being the discriminant of the quadratic polynomial. Finally, sufficient conditions for two
positive roots are provided by (A.6) andκk > 1

2, sk > 3, sk > η2/4. We deducea1 < 0,
sk > η2κk(1− κk) or a0 < 0 andsk + 1+ 8κk(κk − 1) > 0 or1 > 0.

For periodic solutions and the damping factorβnk, let us definen±as,k = (−a1±
√
1)/2β.

Choosingn0k = n−as,k, n0k + nk = n+as,k we obtainβnk =
√
1 > 0.

A.5. (1+ 1) Solutions of the type (1.4)Nj(x, t) = n0j + njN(x, t)
We assume that more than oneNj(x, t) are of this type and the set (n0j , n0j + nj ) are the
set of two roots coming from the set (Rj = 0). We rewrite (3.3):

(∂t + ej ∂x)N(x, t) = N(N − 1)Cj j = 1, 2, 3

Cj := [σj (n
2
3− n1n2)+ ακj (n1+ n2+ 2(d − 1)n3)

2]/nj − β(n1+ n2+ 2(d − 1)n3).
(A.8)

If one Nk(x, t) = n0k is a constant, then necessarilyCk = 0 and we find, by linear
combination of the two other, one-dimensional or similarity solutions not (1+ 1):

(i)Nj (x, t), j = 1, 2, N3 = n03→ 2∂tN = (C1+ C2)N(N − 1), 2∂xN

= (C1− C2)N(N − 1)→ [(C1− C2)∂t − (C1+ C2)∂x ]N

= 0→ N(z), z = (C1+ C2)t + (C1− C2)x

(ii)Nj (x, t), j = 1, 3, N2 = n02→ ∂tN = C3N(N − 1), ∂xN

= (C1− C3)N(N − 1)→ [(C1− C3)∂t − C3∂x ]N

= 0→ N(z), z = C3t + (C1− C3)x

and similarly forNj(x, t), j = 2, 3, N1 = n01. For the threeNj(x, t), coming back to two
of them we obtain the previous results.
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